# Energy, Power and Radiation Flux

## Energy

The radiant energy $Q$ associated with radiation depends both on the number of photons and the amount of energy carried by each individual photon: \begin{align} Q := \sum_i^\text{photons} Q_i = \sum_i h \cdot \nu_i \end{align} When considering radiation of only a single wavelength $\lambda$ (monochromatic radiation), all photons carry the same amount of energy and the total radiation energy can be thought of as a measure of the photon number.

*
In most other branches of physics the letter $E$ would be more common for energy but in the area of radiometry the irradiance is denoted by $E$ as well and eventually won over energy. ^{[1]}
*

## Power/Radiation Flux

In many situations it is more interesting to consider the rate at which energy is transferred per time $t$.
The corresponding quantity is called power
\begin{align}
P := \frac{\D{Q}}{\D{t}}
\end{align}
and has dimensions of energy per time ( [P] = J s^{-1} = W ).

When speaking about radiant power that is emitted by, passing through or incident on a particular surface, the term flux $\phi$ (for $\phi$lux) is perhaps more common.

*
However, some people use flux interchangeably with what I call flux density. ^{[2]}
When I am unsure about what is meant in a particular context, I usually try to figure out the units that correspond to the quantity in question in order to understand what is meant.
*

^{[3]}

^{[4]}

## References

[1] | Introduction to Radiometry SPIE Press 1998 (ch. 2.3) |

[2] | Atmospheric Radiation Wiley 2014 (p. 46) |

[3] | Introduction to Radiometry SPIE Press 1998 (ch. 2.3) |

[4] | Handbook of Applied Photometry AIP Press 1997 (ch. 2.4.2) |